
 

Abstract—Passive network monitoring is a complex
activity that mainly consists in packet capturing and
classification. Unfortunately this architecture often cannot
be applied to gigabit networks, as the amount of data to
capture is too large for the monitoring applications.

This paper describes the challenges and lessons learnt by
the author while monitoring networks at gigabit speeds and
above. Finally, it describes an architecture able to
successfully monitor networks at high speeds using
commodity hardware and open source software.

Index Terms—Passive Network Monitoring, Packet
Capture, NetFlow, sFlow.

I. PASSIVE NETWORK MONITORING: STATE OF THE ART

ears ago, many computer specialists predicted the need
to have more bandwidth available because people were

supposed to need it mostly for multimedia applications.
Time has proved that this statement was half true.
Although there are many attempts to provide TV/radio
access over the Internet, today most bandwidth demanding
applications do not belong to the family of interactive
multicast-based multimedia applications but rather to peer-
to-peer (P2P) [3]. In fact while multicast transmission has
not really taken off, the Internet has experienced a
tremendous growth of P2P applications. Various attempts
to ban this kind of applications failed because an
application that has been stopped (e.g. Napster), many more
appeared on the scene and new ones are appearing every
month. When P2P applications were first introduced, they
were mostly used for exchanging songs coded in MP3,
whereas today many users share DVDs and movies. The
result is that in a couple of years the average size of a file
exchanged using P2P applications has risen from a few MB
of an MP3 file to 700 MB of a compressed movie with a
100/200-x increase.

The use of P2P applications changed the Internet traffic

This work was supported in part by the IST project SCAMPI (IST-
2001-32404) funded by the European Union.

Luca Deri is with NETikos S.p.A., Via Matteucci 34/b, 56124 Pisa,
Italy (email: luca.deri@netikos.com, http://luca.ntop.org/).

not only in terms of volume but also in terms of type, as
these applications redefined the concept of client and server.
Usually a server is a host that provides a service to several
clients. In terms of IP traffic:

• A client establishes one or more connections with a
server, uses the server, and then closes the connections.

• Servers can exchange data with both clients and
servers, whereas clients talk only with servers.

• Client to server connections are often asymmetrical
(e.g. in HTTP the client sends little data with respect
to the server).

• Packets such as ICMP port unreachable or TCP packets
with the RST flag set are relatively rare, and they are
used to indicate that there is a problem somewhere.

• Servers and applications usually listen on well-known
ports.

With the advent of P2P, the above statements need to be
revised as:

• There is not a true difference between a client and a
server as a P2P application is both a client and a
server.

• The number of permanently established TCP
connections is very little (usually only those with
master servers).

• Periodically (e.g. when a file need to be downloaded or
at every new attempt to talk with additional master
servers) applications attempt to establish new
connections whose success rate is very little, producing
quite some ICMP traffic used to report the problem.

The main consequence of the use of P2P applications is
that many network monitoring applications to be modified
are not rewritten. For instance a host that periodically:

• receives several ICMP Destination Unreachable or
ICMP Administratively Prohibited packets;

• attempts to establish TCP connections mostly with no
luck;

cannot be marked with a red exclamation mark on the
management console, as this host is likely to run a P2P
application.

Passively Monitoring Networks at Gigabit
Speeds Using Commodity Hardware and Open

Source Software

Luca Deri, NETikos S.p.A.

Y



While networks changed significantly in terms of
bandwidth available and type of traffic, network monitoring
applications basically remained the same. Besides large
companies that can afford to buy expensive network traffic
monitoring applications, most of the people today monitor
the traffic flowing across their network using the same tools
they used three years ago, which in most of the cases means
MRTG [5] polling traffic information out of network
routers/switches interfaces via SNMP MIB-II variables [13].

Unfortunately today this way of monitoring networks is
no longer effective because:

• The traffic has changed significantly from what it used
to be a few years ago both in terms of protocols (HTTP
is likely not to be the most used protocol anymore)
being used and user (many end-user computers move
more data than servers) behavior.

• It’s not longer possible to predict what is flowing
across the network using aggregate information such as
the one provided by network interface counters.

• Security violation attempts are quite common and
cannot be detected without using specialized tools.

• Well-known ports cannot be used anymore to identify a
service (e.g. passive FTP and P2P use dynamic ports)
making it difficult to calculate simple statistics such as
how much FTP traffic is flowing across the local
network?

• Standard monitoring protocols such as Cisco NetFlow
[6] are often implemented very badly on modern
network equipment. For instance, popular network
appliances produced by companies such as Juniper
Networks and Extreme Networks that can switch
millions of packet/second, feature NetFlow
implementations able to handle less than 10’000
packet/sec1. For this reason, network administrators
cannot base their standard NetFlow-based monitoring
tools on the equipment they use for operating the
network unless they want to experience severe packet
loss. This is yet another reason why many network
administrator still reply on SNMP.

In recent years the speed of many networks has moved
from the Mbit to the Gbit range. In LANs Gbit network
adapters are very common in the last few years2 and Gbit
ethernet switches are now so cheap that basically every new
network is going to be based on this technology. In WANs,
many institutions are replacing existing ATM networks
with high speed (1 Gbit and above) optical networks based
on technologies such as MPLS [1] and DWDM [2] (Dense
Wavelength Division Multiplexing). For instance in the
past months, the local university campus backbone has
migrated from 155Mbit ATM to a 1Gb MPLS network,
and replaced the 45 Mbit leased line used for Internet
connectivity with a 2.5 Gbit line. Finally, ADSL lines
running at not less than 256Kbit have often replaced end-

1 Juniper M5 switch for instance can handle about 7’000 packet/sec.
2 Apple manufactures Macintosh computers with 10/100/1000

Ethernet adapters since 1999

user Internet connectivity based on 56K/ISDN modem
lines. Basically today a single user has often more
bandwidth than the one that used to be available to a mid
company two years ago.

A side effect of Gbit networks is that tools that were
more than adequate in terms of performance for monitoring
100Mbit networks are not often able to keep up at high
speeds. Most libpcap [7] based applications fall into this
category. Recent studies [8] have shown that the problem is
not the libpcap performance per-se, but the application that
sits on top of it. For instance Snort [9], a very popular IDS
(Intrusion Detection System) tool, is not able to analyze
traffic above ~200 Mbit, whereas [10] has shown that
simply changing the implementation of a core Snort routine
the application performance could be almost doubled.
Similarly, traffic sniffers such as tcpdump or ethereal
cannot save traffic on disk at Gbit speeds without losing
packets [8] not just because these applications are inefficient
but also for other issues (e.g. the file system performance
bottleneck). In order to overcome these performance
limitations caused by both the operating system and the
PCI bus bandwidth3, some researchers started to use
network cards equipped with NPU (Network Process Units)
[11] such as the Intel IPX family. So, as to compute traffic
statistics directly on the card without having to move all
the traffic to the computer. The dark side of NPU cards is
that they:

• are quite expensive and relatively difficult to purchase;
• are available only for a few media types, usually

Ethernet and a few others;
• have little memory on board limiting dramatically the

size of programs that can run on the card itself4;
• can be programmed using very primitive tools and

languages.

Therefore, the use of NPU cards solves some of the
problems but introduces new limitations in terms of ease of
programming and hardware availability

In conclusion, the combination of:
• High speed networks in both LAN and WAN

environments.
• Performance bottleneck of many applications when

used on Gbit networks.
• New traffic patterns mostly due to the use of P2P

protocols.
• Slow, if any, evolution of existing monitoring tools.

made passive network monitoring at Gbit speeds quite
challenging. The following chapters cover the design and
implementation of an architecture, based on commodity
hardware and open source software, which allowed the
author to successfully monitor Gbit networks.

3 Currently the 64-bit PCI bus has a bandwidth of 4 Gbit [12].
4 Not all the NPU-based cards (e.g. Endace DAG cards) allow

programmers to run programs directly on the board (Intel IXP allow this).



II. AN ARCHITECTURE FOR HIGH SPEED TRAFFIC
MEASUREMENT

A. Design Goals and Requirements
During the design phase, the author made the following

decisions:
• All the hardware components need to be available on

the market at a reasonable price.
• All the software measurement applications need to be

open source either home grown or available on the
Internet.

• The architecture should maximize the number of
existing applications that can take advantage of it.

• The architecture should be easily replicable (i.e. it
should not be tied to the author’ environment) and
really scalable.

When the author migrated the existing network to Gbit
speed, he decided to purchase network equipment that
feature:

• Rich monitoring capabilities.
• Ability to configure the core network switch for

performing some measurements directly on it.
• Access to traffic counters using standard protocols such

as SNMP.
• Ability to mirror traffic across different media types

(e.g. mirror IP traffic encapsulated on ATM cells on
Ethernet).

• High programmability using common languages such
as C and Perl.

At the moment the switches that best fits these
requirements belong to the M-series of Juniper Networks
[15]. The key motivation in selecting this product has been
the ability to use it both as a switch and as a sort of NPU
card at a portion of the price5. In fact, the Juniper switches
can be instrumented from remote using an XML-based
language called JUNOScript [16] to:

• account traffic and access the traffic statistics via
SNMP similar to NeTraMet [17];

• filter traffic using a flexible language such as BPF
(Berkeley Packet Filter) [18] and either mirror, block,
or account it;

• upload binary programs and execute them directly on
the switch6.

The switch performs all the activities just described in
ASICs (Application Specific Integrated Circuits), with no
performance degradation, as the main CPU is not involved
at all.

The use of commercial hardware has several advantages
with respect to the use of custom hardware designed to run
at high speeds:

5 As of today a Juniper M5 switch with a Gbit card costs 1/4th of the
popular Endace 64-bit DAG card.

• Cost savings: the switches avoid the use of custom
cards (e.g. NPU-based cards) and they virtually cost
nothing, as they are needed to run the network.

• Monitoring heterogeneous media: it is possible to use
applications designed to play with IP on Ethernet to
analyze IP traffic encapsulated on ATM (and other
media), simply configuring the Juniper to mirror that
traffic on a Gbit Ethernet interface (the switch takes
care of all the conversions involved).

On the software side, the requirement to use open source
software is motivated by the availability of the source code
with no license constrains, that enables people to modify it
in order to fully take advantage of the architecture. In
particular as the author is actively developing ntop [19], an
open source passive network traffic monitor, a major project
goal is to see how ntop can be modified in order to run at
Gbit speeds.

The following section describes in detail the architecture
used as test bed.

B. Hardware Architecture
The picture below highlights the core architecture

components.

Internet (Leased Line)

Gbit Backbone (Ethernet)

Company Headquarters

Juniper M5

Traffic Mirror
ntop

(Gbit Ethernet) (ATM Line)

Fig. 1. Hardware Architecture Overview

The Juniper M5 is a low cost switch designed to handle
more than 6 million packets/sec, that connects the local
ethernet backbone with both the Internet (Leased Line) and
the company headquarters (ATM). The switch is also
responsible for mirroring traffic over a Gbit ethernet
interface to which a PC (Dual 1.8 GHz AMD Athlon™
with 64 bit PCI ethernet adapters7) is connected. This PC
has two interfaces: the first one is attached directly to the
Juniper and is used to receive mirrored traffic, whereas the
other interface is used to connect the PC to the local
backbone. The PC is based on Linux and is used to run
monitoring applications including ntop. Juniper traffic
mirror is very flexible as it allows mirroring either all the
traffic flowing across one or more interfaces or only those
packets that match a filter expression. In addition, when
mirroring the ATM traffic, the switch sends the IP packets
without the ATM encapsulation so that monitoring
applications need to support just ethernet to understand the
ATM traffic. If properly instrumented, the switch can

                                                                                 
6 Juniper uses FreeBSD for instrumenting and controlling the switch;

hence every application that runs on such OS can run on the Juniper.
7 64-bit PCI adapters are needed to capture traffic at Gbit speed. In

fact 32 bit Gbit adapters cannot usually operate above 400 Mbit.



mirror a subset of the all the packets as it supports packet
sampling.

C. Monitoring Architecture
This architecture is targeted at Gbit speeds as this is

currently the top network speed available both at the author’
premises and in several companies. Carriers currently use
multi-Gbit speed networks and they will likely need a few
more years before they become more widely used. The
monitoring architecture has been designed starting from the
following goal: provide the same metrics supported by ntop
in LANs on WANs at Gbit speeds. Ntop currently performs
several measurements including:

• RMON-like measurements (e.g. top senders/receivers,
protocols/IP ports usage distribution, traffic matrix)

• NetFlow-like measurements (e.g. sessions tracking)
• Security measurements [20] (e.g. signature detection,

ICMP traffic tracking, suspicious traffic detection).

Unfortunately not all these measurements are Gbit-
friendly as some of them require several CPU cycles that
could lead to severe packet loss. In order to overcome this
problem the author decided to:

• instrument the switch to perform some measurements
directly on the switch;

• use the traffic mirror facility to feed the Linux box
with network traffic.

The measurements that can be performed on the switch
make sense on the Juniper as they are performed directly on
ASICs at wire speed and not handled by the main CPU. By
means of JUNOScript, it is possible to implement and
define some flows and associate a counter to them as shown
below.

term anti-fragment {
        from {
             is-fragment;
             protocol icmp;
        }
        then {
             count FragmentAttack;
             syslog;
             discard;
         }
  }

Fig. 2. Definition of a Counter for Detecting ICMP Fragment Attacks

The value of the counter can be read using several
methods including CLI (Command Line Interface), SNMP
or XML-RPC over HTTP.

Complex measurements like those that are more complex
than if filtering(captured packet) is
true then count (e.g. NetFlow flow generation)
cannot be implemented by the Juniper due to the way traffic
is accounted. In this case the author decided to use the

Juniper as an efficient packet filter and mirror appliance that
forwards packets to a Linux box where complex
measurement software is running. The design decision to
decouple the overall implementation into Juniper + Linux
has been motivated by the following facts:

The Juniper box:
• natively implements traffic mirror across different

media types, so that a cheap Ethernet-based Linux box
can monitor ATM or SONET traffic with no additional
hardware;

• can account traffic that can be described using simple
BPF-like filters.

• can be used to filter/sample uninterested traffic, hence
reducing the load on the Linux box. For instance if the
Juniper box is connected to a 10Gb link and a network
administrator over such link wants to analyze the traffic
generated by a specific host, the Juniper box can be
instrumented to forward Linux just the traffic that
really needs to be accounted. In this case the Linux box
doesn’t have to handle 10 Gbit (far too much traffic for
a PC) but just a portion of it (i.e. only the traffic
generated by the monitored host).

The Linux box can:
• run complex software such as a network probe or IDS

that couldn’t run natively on the Juniper;
• be used both as a network probe and collector for the

counters implemented on the Juniper.

Basically the Juniper is used for accounting “easy to
count” traffic (e.g. traffic volume), mirroring and filtering
traffic (e.g. discard uninteresting packets), whereas the PC
is deployed for complex accounting (e.g. session tracking,
attack detection, traffic matrix).

Nevertheless, the above architecture is not the solution
for all the problems whenever all the packets need to be
analyzed, say for complex accounting (e.g. count the
bandwidth used by P2P applications) or security purposes.
In this case, the Juniper will mirror the full traffic stream to
the Linux box without filtering out much traffic, causing
severe packet loss when complex applications are activated
on the Linux box. For instance, ntop has been designed not
to handle traffic above a couple of hundred Mbit, hence it
cannot operate at Gbit speeds. In order to overcome this
performance bottleneck, the author decided to use a two-
layer architecture based on a preprocessor plus the existing
monitoring application. This solution has the advantage
that the ntop code does not need to be changed nor traffic
analysis facilities be removed in order to increase the
application performance.

Preprocessor Monitoring
Application

Full Traffic

Stream

Preprocessed

Traffic

Fig. 3. Traffic Preprocessor

A preprocessor is responsible for reducing the amount of



work that the monitoring application has to carry out. The
simplest preprocessor is a traffic sampler that discards
packets according to a specific rate similar to what sFlow-
based probes [23] do. In this case the Juniper box can be
used as a preprocessor as it can mirror a subset of the
overall traffic at a specified rate. Although this solution is
effective, it has some drawbacks:

• The monitoring application need to know at what rate
it is receiving packets in order to scale traffic data.

• Some applications (e.g. IDSs) may be unable to
operate properly as packets discarded by the traffic
sampler may contain important information (e.g. an
attack signature).

In the ntop case, a traffic sampler can be very well used
for enabling ntop to cope with Gbit speeds and above.
However the author decided to implement a smarter
preprocessor in order to avoid using packet sampling at
least for speeds in the Gbit range. The lessons learnt
deploying ntop on several different environments and also
using traffic generators [21] on a test network are:

• It is possible to capture traffic up to ~900 Mbit on a
PC with a standard Linux distribution (Debian Linux
3.0 with no kernel tuning) based on a dual AMD
Athlon XP 1.6 GHz and 64-bit PCI Gbit Ethernet
adapters.

• Although many people say that libpcap performance
could be a problem this statement is not completely
correct. A simple
pcap_open();
while(1) capturePacketAndDiscardIt();        
pcap_close();
is able to capture packets with no loss at full Gbit
speed (see next chapter).  

• The upper limit is ~250’000 packet/sec where CPU is
used at about 85%.

The conclusion is that ntop is not able to run above
~200 Mbit because the time spent analyzing each captured
packet is too long, hence the CPU is overloaded (both due
to packet capture and anaysis) and packet loss occurs. For
this reason the author has written nProbe [22], a light
NetFlow v5 pcap-based open source traffic probe, to be
used as preprocessor. This application is much faster than
ntop as its architecture is very simple. nProbe has a large
hash table that contains information about traffic probe.
Each time a packet is captured, the corresponding hash
bucket is updated and the captured packet discarded.
Periodically the expired flows contained in hash buckets are
asynchronously emitted and the bucket is empty, ready to
accommodate a new flow. In nProbe the packet processing
time is basically the time spent on hash lookup plus the
bucket counter update. This means that nProbe is slightly
more complex than the simple pcap-based test application
used to study the libpcap performance. The advantage of
using nProbe is that ntop does not have to handle all the
packets but just the NetFlow flows sent by nProbe to ntop,

which are a little portion of the initial traffic. The
combination of ntop with nProbe has allowed the author to
use ntop for analyzing Gbit networks mostly with no
packet loss without packet sampling techniques and code
changes (see next chapter). This result is very important as
by configuring a light packet sampling (e.g. 1:10) on the
Juniper box, it is possible to analyze multi-Gbit networks
using the same architecture (scalability).

In order to simplify the Juniper instrumentation, the
existing libpcap implementation, used by ntop to capture
packets, has been extended as follows:

• Ability to specify packet filters in both BPF and
Juniper syntax.

• Ability to specify a packet-sampling rate.
• Transparent instrumentation of the Juniper box

whenever a filter or traffic rate is specified.

Juniper instrumentation is performed transparently by
libpcap by means of JUNOScript. Whenever the libpcap is
initialized or a new filter is specified, the library issues a
JUNOScript request to set the filter into the switch so that
only the traffic matching the filter is being mirrored.

Thanks to these enhancements, ntop and all existing
libpcap-based applications can transparently instrument the
Juniper so that mirrors only the specified traffic without the
need to modify its configuration via CLI.

III. LESSONS LEARNT

This chapter describes the lessons learnt while
monitoring high speed networks that have influenced the
design of the architecture described in the previous chapter.

A. What is Traffic Measurement Complexity?
Many people believe that monitoring networks at Gbit

speeds is challenging because of the high traffic volume.
The author does not claim that this statement is wrong, but
believes that it is half true. Recent DDOS (Distributed
Denial Of Service) attacks have demonstrated that a
100Mbit stream of tiny fragmented traffic generated almost
randomly, is much more difficult to handle than a few
hundred Mbit of “normal” traffic. Therefore it is probably
better to define the network measurement complexity in
terms of number of packets/sec rather than in Mbit.

However packet rate is yet just one aspect of the
problem. In fact, very often the type of measurement is
influenced by the kind of traffic being measured. For
instance per-host measurement (e.g. top 10 senders) requires
that each packet being captured is analyzed and the host
peers stored. In this case, high rate traffic between two
hosts is easier to handle compared to a lower rate traffic
distributed among several different hosts. This is because
measurement applications need to:

• Allocate memory for each host bucket that contains
host statistics.

• Spend a significant amount of time in host lookup that



increases with the number of known hosts.
• Per-protocol measurement (e.g. top 10 protocols) is not

influenced by the source/destination peers but just by
the protocol type. In this case, as the number of
different protocols is limited, the type of traffic does
not influence significantly the performance of the
measurement application.

In summary, traffic measurement complexity is
proportional to the packet capture rate and type of
measurement required.

B. How to Measure What?
In high-speed networks, the time spent analyzing each

single packet need to be small and limited. For instance
long-standing operations (e.g. host name resolution) do not
need to be performed in-line as they could lead to packet
loss. nProbe has demonstrated that reducing the time spent
for analyzing packets enables pcap-based applications, on
adequate hardware, to cope with Gbit speeds. Of course the
nProbe solution cannot be applied everywhere. For instance
IDS systems need to analyze the raw packets so they cannot
take advantage of NetFlow flows. In this case it is
necessary to reduce the amount of packets the IDS needs to
analyze. This can be achieved by configuring the Juniper so
that some packets are not forwarded on the mirror interface.
For instance packets coming from “safe” network interfaces
and hosts could be dropped by the Juniper and not sent to
the IDS. During the experiments, the author has realized
that IDSs can usually operate analyzing just the packet
header and initial data payload without the need to scan the
rest of the packet.

For this reason the author has designed a modified
version of NetFlow v5, named v5+, that also contain
packet payload information as follows:

• v5+ flows have variable lengths, are compressed,
support autentication, and contain fragmentation
information.

• Non-ICMP, UDP and TCP flows8 contain up to 64
bytes (user configurable) of the initial data payload.

• ICMP flows contain a bitmask that specifies the ICMP
packet type and code.

In order to validate this work, nProbe has been enhanced
with v5+ support, and a v5+ NetFlow collector based on
Snort is currently being developed. An early prototype has
been deployed on a real network and compared with the
original Snort. The results are very interesting as the Snort-
NetFlow application has identified most (but not all) of the
problems reported by the original Snort. For instance
Snort-NetFlow is not able to match signatures that:

• Have long binary strings to match with packet payload.
• Require IP packet fields (e.g. TOS) not part of the

8 On TCP flows, in most of the cases it is enough to add payload
information only is the flow to emit has the SYN|ACK flags set (i.e. those
that identify the session begin), in order to reduce the flow size.

flows.
• Need per-packet TCP flags information (NetFlow

reports aggregate flow information).

On the other hand this solution has the advantage of
being able to run Snort at Gbit speeds without the need of
additional hardware (e.g. traffic splitters).

C. Divide et Impera Revised
In computer science the “divide et impera” principle is

very well known. The experiments described in this paper
show that it can still be applied to Gbit traffic
measurement. Some companies produce traffic splitters that
allow an incoming high-speed link to be split into several
low speed links (e.g. using products such as TopLayer’s
IDS Balancer). This solution has the limitation that does
not solve the problem of analyzing traffic at high speeds as
the amount of captured traffic is not reduced but just
distributed across several probes. Instead:

• the use of traffic preprocessors such as nProbe;
• delegation of some measurements to the Juniper;
• traffic sampling;

are good ways to limit the amount of traffic that needs to
be analyzed by monitoring applications and IDSs.

D. Packet Loss
Packet loss is not a problem for nProbe with real

network traffic where packets are distributed in the 64-1500
byte ranges. Using a hardware traffic simulator that fills the
network with small (64 byte) packets, nProbe experienced
packet loss. Basically the probe is able to handle with no
loss up to ~250’000 packet/sec. In order to decide whether
this limit was due to libpcap or the operating system (OS),
the author has ported nProbe directly on top of the OS
using raw sockets (Linux) and /dev/bpf* (BSD) reusing
code from the ettercap project [25]. The overall performance
has increased a bit but the difference was negligible.
Running the probe on different OSs (Linux and BSD) has
produced more or less the same result9. The outcome of
these experiments is that:

• Libpcap performance is not an issue, as it does not
introduce significant computing overhead.

• The overall performance is basically the same on
different OSs using the same hardware.

• Network cards and drivers significantly influence the
overall performance.  

IV. CONCLUSIONS

The proposed architecture is currently being used in the
author’s company and at the University of Pisa for
monitoring the backbone. Using nProbe, ntop can be used
to account traffic at Gbit speeds with no modification.
Juniper and ntop counters are periodically saved on RRD

9 The flow collector (cflowd) performs (with respect to flow loss)
much better on BSD than on Linux, probably due to a more efficient
packet buffering.



databases [24] using homegrown software10. The traffic
analysis in the past months has enabled network
administrators to identify several network flaws and hosts
that were producing unexpected traffic mostly due to
misconfiguration and viruses. These problems were not
identified using MRTG and SNMP interface counters on
the border gateway.

All the software described in this paper is freely available
on the Internet (http://www.ntop.org) under the GNU GPL
license. Some Unix distributions including but not limited
to FreeBSD and Linux, come with ntop preinstalled.

ACKNOWLEDGMENT

The author thanks Stefano Suin, Paolo Caturegli and
Davide Vaghetti of the Centro Serra of the University of
Pisa for providing requirements, and suggestion other than
for letting him run some tests on their backbone. In
addition he thanks Yuri Francalacci of NETikos for his help
during the design and testing of the tools here described.

REFERENCES

[1] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label
Switching Architecture”, RFC 3031, January 2001.

[2] Cisco Systems, “Introducing DWDM”,
http://www.cisco.com/univercd/cc/td/doc/product/mels/cm1500/dwd
m/dwdm_fns.htm, September 2002/

[3] F. Manjoo, “Peer-to-Peering Into the Future”, Wired Magazine,
February 2001

[4] J. Kwan, “Peer-to-Peer Promises to Reshape the Net”, Mercury
News,
http://www0.mercurycenter.com/svtech/news/top/docs/peer021201.
htm, December 2001.

[5] T.Oetiker, “Multi Router Traffic Grapher (MRTG)”,
http://www.mrtg.org/.

[6] Cisco Systems, “NetFlow Services and Applications”, White Paper,
http://www.cisco.com/warp/public/cc/pd/iosw/netlct/tech/napps_wp.
htm, July 2002.

[7] Lawrence Berkeley National Labs, “libpcap”, Network Research
Group, http://www.tcpdump.org/.

[8] F. Risso, and L. Degioanni, “An Architecture for High Performance
Network Analysis”, Proceedings of ISCC 2001, Hammamet,
Tunisia, July 2001/

[9] M. Roesch, “Snort - Lightweight Intrusion Detection for Networks”,
Proceeding of LISA ‘99, Seattle, November 1999.

[10] E. Markatos, and others, “Exclusion-based Signature Matching for
Instrusion Detection”, International Conference on Communications
and Computer Networks (CCN 2002), October 2002.

[11] G. Memik, and W.H. Mangione-Smith, “Specialized Hardware for
Deep Network Packet Filtering”, Proceeedings of FPL 2002,
Montpellier, France, September 2002.

[12] Quatech Inc., “PCI Bus Overview”, Technical Report,
http://www.quatech.com/Application_Objects/FAQs/comm-over-
pci.htm, 2001.

[13] K. McCloghrie, and M. Rose, “Management Information for
Network Management of TCP/IP-based Internets: MIB-II”, RFC
1213, March 1991.

[14] W. Betts, “Defying Denial of Service Attacks”, White Paper,
Network Magazine, May 2001.

[15] Juniper Networks, “M-Series Routers”,
http://www.juniper.net/products/, 2002.

[16] Juniper Networks, “JUNOScript”,
http://www.juniper.net/support/JUNOScript/, 2002.

10 The site http://mrtg.unipi.it/ contains the current network map and
provides access to network traffic statistics produced using the
architecture here described.

[17] N. Brownlee, “NeTraMet - A Network Traffic Flow Measurement
Tool”, http://www.caida.org/tools/measurement/netramet/, 2002.

[18] S. McCanne, and V. Jacobson, “The BSD Packet Filter: A new
architecture for user-level packet capture”, Proceedings of 1993
Winter USENIX Conference, San Diego, January 1993.

[19] L. Deri, R. Carbone, and S. Suin, “Monitoring Networks Using ntop,
Proceedings of IM 2001”, Seattle, May 2001.

[20] L. Deri, S. Suin, and G. Maselli, “Design and Implementation of an
ADS: an Empirical Approach”, Proceedings of Terena TNC 2003
Conference, Zagreb, Croatia, May 2003 (to appear).

[21] A. Götje, “nProbe Performance Evaluation”, Technical Report,
http://www.ntop.org/nProbe.html, Hauman Technologies Inc., 2002.

[22] L. Deri, “nProbe: an Open Source NetFlow Probe for Gigabit
Networks”, Proceedings of Terena TNC 2003 Conference, Zagreb,
Croatia, May 2003 (to appear).

[23] InMon Corp., “sFlow: A Method for Monitoring Traffic in
Swutched and Routed Networks”, RFC 3176, September 2001.

[24] T.Oetiker, “Round Robin Database (RRD) Tool”,
http://www.rrdtool.org/.

[25] A. Ornaghi, and M. Valleri, “Ettercap 0.6.9”,
http://ettercap.sourceforge.net/, 2002.


